

# **Fueling Creative Solutions**

# 7FA Case Study after Upgrading to Water Cooled Liquid Fuel Check Valves

Source: Combined Cycle Journal, Third Quarter 2009

### SITE

Progress Energy, Carolina's Richmond County **Energy Facility** 

Personnel Quoted: David Saad, O&R (operations and results) superintendent

### CASE HIGHLIGHTS

Transfer reliability is in the upper 80s (percent) after installation

Installations typically took one day per engine

The first engine was equipped with the valves in 2006

#### BACKGROUND

The station has five simple-cycle 7FAs and one 2 × 1 7FA-powered combined cycle. All engines are equipped for dual-fuel firing and have DLN2.6 combustion systems. When the  $2 \times 1$  Siemens 501F-powered combined cycle is completed, the station will have a summer rating of about 1900 MW.

The peakers each start 100 to 200 times annually and run between about 1000 and 1500 hours. The combined-cycle is a mid-range unit. Unit run time on distillate ranges from about six to 25 hours annually-virtually all of that to keep the liquidfuel systems exercised.

#### 7FA ENGINE PERFORMANCE BEFORE **CONVERTING SYSTEM HARDWARE TO IMPROVE RELIABILITY**

Saad recalled that fuel-transfer reliability was in the low 60s (percent) with standard check valves and the reason why the plant switched to JASC.

#### **7FA ENGINE PERFORMANCE AFTER** CONVERTING SYSTEM HARDWARE

Today transfer reliability is in the upper 80s (percent). The O&R Superintendent cautioned that not all fuel-transfer failures are related to the check valves.

#### **CONVERSION PROCESS**

The O&R superintendent classified the process as "not difficult."

Plant personnel prefabricated all the lines after the trial installation, which took about two days per unit. Staff also did the installation-typically a day for each engine. Early on, Saad added, they operated the check-valve cooling circuit with a

Page 1



**JASC Address** 2303 West Alameda Drive Tempe, AZ 85282 USA

**Contact Us** 

sales@jasc-controls.com engineering@jasc-controls.com +1.602.438.4400

Copyright © 2014 All Rights Reserved delta P that was too high: 50 psi. Overcooling allowed unwanted wax to come out of solution. Reducing the differential pressure to 12 psi eliminated the issue.

To assure that the plant maintains fuel-transfer reliability at a high level, and to avoid any failed fuel transfers being attributed to check valve problems, the check valves are removed from each combustor and hot-gas-path inspection and returned to JASC for servicing.

#### **INSTALLATION**

All engines have JASC water-cooled liquid-fuel check valves-14 per GT (one per combustor). The first engine was equipped with the valves in 2006.

Water for valve cooling comes from the closed cooling-water system, which recirculates a mixture of water and glycol. The fin-fan cooler for the peakers supplies water at about 130F in summer; and for the combined cycle at about 150F. Such hot water for cooling is not problematic because the goal is to keep the check valves under 250F.

According to the O&R superintendent, the few check-valve problems experienced were coolingwater related.



JASC's Water Cooled Liquid Fuel Check Valve is a state-of-theart application and is a modified version of JASC's Liquid Fuel Check Valve that incorporates active cooling of the check valves internals while maintaining a Class 6 seal in the check and reverse flow direction from hot gas path to hot gas path.



**JASC Address** 2303 West Alameda Drive Tempe, AZ 85282 USA

## **Contact Us** sales@jasc-controls.com

engineering@jasc-controls.com +1.602.438.4400

Copyright © 2014 All Rights Reserved Page 2